Colloidal dimers can be detected and characterized with xSight
• Altman, L. E., Quddus, R., Cheong, F. C. & Grier, D. G. Holographic characterization and tracking of colloidal dimers in the effective-sphere approximation. Soft Matter, 17, 2695- 2703 (2021).
A group from Gothenburg, Sweden, analyzes large nanoparticles with holography and machine learning
• Midtvedt B, Olsén E, Eklund F, Hook, F., Adiels, C. B., Volpe, G., Midtvedt D. Fast and Accurate Nanoparticle Characterization Using Deep-Learning-Enhanced Off-Axis Holography. ACS Nano, 15, 2240-2250 (2021).
Modeling spherical aberrations improves holographic particle characterization
• Martin, C., Leahy, B. & Manoharan, V.N. Improving holographic particle characterization by modeling spherical aberration. Optics Express, 29, 18212-18223 (2021).
Symmetric and non-symmetric patchy colloidal clusters are characterized with xSight
• Kim, Y.-J., Kim, J.-H., Jo, I.-S., Pine, D. J., Sacanna, S. & Yi, G-R. Patchy Colloidal Clusters with Broken Symmetry. Journal of the American Chemical Society, 143, 13175–13183 (2021).
Biomarkers in solution can be detected with lens-free holography
• Xiong, Z., Potter, C. J. & McLeod E. High-Speed Lens-Free Holographic Sensing of Protein Molecules Using Quantitative Agglutination Assays. ACS Sensors, 6, 1208–1217 (2021).
Experience of the microscopic world is made more tangible with a combination of virtual reality and holographic techniques
• Ferretti, S., Bianchi, S., Frangipane, G. & Di Leonardo, R. A virtual reality interface for the immersive manipulation of live microscopic systems. Scientific Reports, 11 (2021).
Determination of complex transmittance and interfering background enhances holographic analysis
• Berdeu, A., Olivier, T., Momey, F., Denis, L., Pinston, F. & Faure, N. Joint reconstruction of an in-focus image and of the background signal in in-line holographic microscopy, C Fournier Optics and Lasers in Engineering, 146, 106691 (2021).
UCLA group investigates the possibility of all-optical hologram reconstruction
• Rahman S. S. & Ozcan A. Computer-Free, All-Optical Reconstruction of Holograms Using Diffractive Networks. ACS Photonics, 8, 3375–3384 (2021).
Scientists at NYU develop a label-free molecular binding assay using THC
• Snyder K., Quddus, R., Hollingsworth, A. D., Kirshenbaum, K. & Grier, D. G. Holographic immunoassays: Direct detection of antibodies binding to colloidal spheres. Soft Matter, 16, 10180-10186 (2020).
THC successfully differentiates protein aggregates from other contaminants even in viscous samples
• Winters, A., Cheong, F. C., Odete, M. A., Lumer, J., Ruffner, D. B., Mishra, K. I., Grier, D. G. & Philips, L.A. Quantitative Differentiation of Protein Aggregates from Other Subvisible Particles in Viscous Mixtures Through Holographic Characterization. Journal of Pharmaceutical Sciences, 109, 2405-2412 (2020).
Structure and composition of porous particles quantified using holographic imaging
• Odete, M. A., Cheong, F. C., Winters, A., Elliott, J. J., Philips, L. A. & Grier, D. G. The role of the medium in the effective-sphere interpretation of holographic particle characterization data. Soft Matter, 16, 891-898 (2020).
Synthesis of colloids can be optimized with the use of holographic imaging
• Middleton C., Hannel, M.D., Hollingsworth, A. D., Pine, D. J. & Grier, D. G. Optimizing the synthesis of monodisperse colloidal spheres using holographic particle characterization. Langmuir, 35, 6602-6609. (2019).
Spheryx team uses xSight to distinguish protein aggregates from other contaminants such as silicone oil
• Kasimbeg, P., Cheong, F. C., Ruffner, D. B., Blusewicz, J. M. & Philips, L. A. Holographic Characterization of Protein Aggregates in the Presence of Silicone Oil and Surfactants. Journal of Pharmaceutical Sciences, 108, 155-161 (2019).
The volume, mass, and refractive index changes in living cells can be tracked in real time with holographic imaging
• Midtvedt, D., Olsen, E., Hook, F. & Jeffries, G. D. Label-free spatio-temporal monitoring of cytosolic mass, osmolarity,and volume in living cells. Nature Communications, 10 (2019).
Water quality can be monitored with THC
• Philips, L. A., Ruffner, D. B., Cheong, F. C., Blusewicz, J. M., Kasimbeg, P., Waisi, B., McCutcheon, J. R., & Grier, D. G. Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions. Water Research, 122, 431-439 (2017).
Quantitative 3D morphology of platelet aggregation illuminated with holographic imaging
• Boudejltia, K. Z., Ribeiro de Sousa, D., Uzureau, P., Yourassowsky, C, Perez-Morga, D., Courbebaisse, G., Chopard, B., & Dubois, F. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy. Biomedical Optics Express, 6, 3556-3563 (2015).
NYU group records videos with holography and fits holograms with Lorenz-Mie theory to track and characterize single colloidal particles
• Lee, S-H., Roichman Y., Yi, G-R., Kim, S-H., Yang, S-M., van Blaaderen, A., van Oostrum, P., & Grier, D. G. Characterizing and tracking single colloidal particles with video holographic microscopy. Optics Express, 15, 18275-18282 (2007).
Flow cytometry is now possible with holographic video microscopy
• Cheong F. C., Sun, B., Dreyfus, R., Amato-Grill, J., Xiao, K., Dixon, L., and Grier, D. G. Flow visualization and flow cytometry with holographic video microscopy. Optics Express, 17, 25513071–13079 (2009).
Harvard group uses holographic microscopy to get a better look at the motion and structure of self-assembled colloidal clusters
• Perry, R., Meng, G., Dimiduk, T., Fung, J. & Manoharan, V. Real-space studies of the structure and dynamics of self-assembled colloidal clusters. Faraday Discussions, 159 (2012).
Imaging of microspheres achieves resolution down to 50nm with holographic video microscopy
• Xu, W., Jericho, M., Meinertzhagen, I. & Kreuzer, H. Digital in-line holography of microspheres. Applied Optics, 41, 5367–75 (2002).
The concept of holographic imaging is born and wins the Nobel Prize in Physics after a couple of decades
• Gabor, D. A new microscopic principle. Nature, 161, 777–778 (1948).
• Gabor, D. Microscopy by reconstructed wave fronts. Proceedings of the Royal Society A, 197, 454-487 (1949).
The quality of holograms dramatically improves with the invention of lasers
• Denisyuk, Y. N. On the reflection of optical properties of an object in a wave field of light scattered by it. Doklady Akademii Nauk SSSR, 144, 1275–1278 (1962).
• Leith, N. E. & Upatnieks, J. Reconstructed Wavefronts and Communication Theory. Journal of the Optical Society of America, 52, 1123-1130 (1962).
The digitalization of holographic microscopy begins
• Schnars, U. & Jüptner, W. Direct recording of holograms by a ccd target and numerical reconstruction. Applied Optics, 33, 293179–81 (1994)
© 2023 Spheryx, Inc. All rights reserved. | Contact Spheryx | Website by TesslerDesigns | Privacy Policy | Cookie Policy | Terms and Conditions | FCOI Policy
Share this page: